

Importance of modeling in the process of development of biomedical implants

ENABLINGTECH

LA SURDORI

Philippe Maxy

Principal Scientist, Technical Fellow

Importance of modeling in the process of development of biomedical implants

INTRODUCTION

Fully Validated Geometrical & Mechanical Model

INTEGRATED SPINE SOLUTIONS

SERVICES & SUPPORT

15.00 (Bap) 10.00

15.0

6 9 10.00

Rotatio 50

Aredtronic

Why use FEA?

- Fundamental Research
 - For a Better Knowledge
- From Fundamental to Applied Research
 For a Better Concept
- Development & Design Optimization
 For a Better Design
- Malfunction Analysis & Understanding
 For a Better Prevention of Risks

NABUNG TECHNOL

Importance of modeling in the process of development of biomedical implants

FUNDAMENTAL RESEARCH

Medtronic

Fundamental Research

Exemple: Burst-Fracture Instrumentations

A fully validated 3D FEA model of the spine can be a powerfull tool to obtain the mechanical environment of the fixation device (forces & moments distribution along the pedicle screws, etc.)

A Burst Fracture can be used as a clinical case to compare different posterior fixation techniques.

Optimize implants with the knowledge of forces and moments that are acting on the device.

THERPICS

Fundamental Research

 Increase rotation of the injured segment, mainly in torsion

THERE

Fundamental Research

- Increase rotation of the injured segment, mainly in torsion
- No significant difference in mobilities between the 4 devices

Fundamental Research

 High stresses were found in the pedicle screw for the Short Device

ENABUNG TECHNOLOGIES

Fundamental Research

• High stresses were found in the pedicle screw for the Short Device

ENABUNG TECHNOLOGIES

 The infralaminar hook unloaded the lower pedicle screw and did not change the stress distribution in the upper pedicle screw

Fundamental Research

• High stresses were found in the pedicle screw for the Short Device

ENABLING TECHNOLOGIES

- The infralaminar hook unloaded the lower pedicle screw and did not change the stress distribution in the upper pedicle screw
- The bone graft also yielded a decrease of stresses both in lower and upper screws

INTEGRATED

Fundamental Research

•

18 16 Pedicle stresses (Mpa) 14 in Flexion 12 10 8 6 4 2 0 -L2 L4 Short D Short D + ILH Short D + ISA Long D

SERVICES & SUPPORT

- not change the stress distribution in the upper pedicle screw
 The bone graft also yielded a decrease of stresses both in
 - lower and upper screws
 - Pedicle stresses disappeared with the long device

High stresses were found in the

The infralaminar hook unloaded

the lower pedicle screw and did

pedicle screw for the Short Device

INTEGRATED

Fundamental Research

18 16 Pedicle stresses (Mpa) 14 in Flexion 12 10 8 6 4 2 0 -L3 L2 L4 Short D Short D + ILH Short D + ISA Long D

SERVICES & SUPPORT

• High stresses were found in the pedicle screw for the Short Device

ENABLING TECHNOLOGI

- The infralaminar hook unloaded the lower pedicle screw and did not change the stress distribution in the upper pedicle screw
- The bone graft also yielded a decrease of stresses both in lower and upper screws
- Pedicle stresses disappeared with the long device

Medtronic

Fundamental Research

- Spinal Finite Element model allows us to analyze not only the segmental mobility, but also the stress distribution in the vertebral segment for various constructs.
- It emphasizes the role of hooks or of bone graft in protecting the pedicle screws from excessive stresses.
- Such a Finite Element model of the vertebral spine appears to be a powerful simulation tool which yields new useful information to complement experimental data and can help in answering most conceptual design questions.

ENABLING TECHNOLOGIES

Importance of modeling in the process of development of biomedical implants

FROM FUNDAMENTAL TO APPLIED RESEARCH

From Fundamental to Applied Research

ENABLING TECHNOLOGIES

- Short Devices:
 - Stress peak in pedicle area

Bending moment in the left upper screw

THEMPS

From Fundamental to Applied Research

THERME

From Fundamental to Applied Research

- Long Device
 - Lowering and moving of stress peak from pedicle area to screw head junction

Bending moment in the left upper screw

THERE

From Fundamental to Applied Research

- Long Device
 - Lowering and moving of stress peak from pedicle area to screw head junction
- Intersomatic arthrodesis:
 - Intermediate solution between short device and long device in terms of implant forces

Importance of modeling in the process of development of biomedical implants

DEVELOPMENT & DESIGN OPTIMIZATION

Two holes on Valley: Seems better !

ENABLING TECHNOLOGIES

•

ASTM F-1798

26

ENNBUNG TECHNOLOGIES

Medtronic

Development & Design Optimization

Axial pull-out following ASTM-F543 standard

- Anterior part of vertebral body rigidly clamped
- Axial ramped load on the screw until total pull-out ٠
- Measurement of screw displacement and resulting ٠ forces

AAA

Development & Design Optimization

Caudo-cranial toggling

- Anterior part of vertebral body rigidly clamped
- Caudo-cranial sinusoidal load on the screw head
- Measurement of screw displacement and resulting forces
- Force to failure and fracture pattern was analyzed.

SERVICES & SUPPORT

INTEGRATED SPINE SOLUTIONS

ENNBLING TECHNOLOGIES

Importance of modeling in the process of development of biomedical implants

VALIDATION

SERVICES & SUPPORT

ENABUNG TECHNOLOGIES

Field of 3D deformations of a spongy bone cube in compression

ENABLING TECHNOLOGIES

Importance of modeling in the process of development of biomedical implants

OTHER EXAMPLES

TOTAL DISC REPLACEMENT

Total Disc Replacement

Understand the effect of the TDR on the physiologic motion behavior of the spine segment

1. Effect of disc prosthesis positioning

 Effect of the disc prosthesis on adjacent levels – Comparison with a rigid posterior fixation device LING TECHNOLOG

ENNRUNG TECHNOLOGIES

THERAPY STRATEGIES & SURGICAL TECHNIQUES

SURGICAL TECHNIQUES

Therapy Strategy

 Pedicle Screw Placement Strategy

SERVICES & SUPPORT

Hedtronic

Philippe Maxy, Medtronic Lawrence G. Lenke, MD, St. Louis, MO Timothy R. Kuklo, MD, Washington, DC David W. Polly, Jr., MD, Washington, DC Michael F. O'Brien, MD, Denver, CO

INTEGRATED SPINE SOLUTIONS

EXPERIMENTAL TESTS

Angle of Kyphosis

ENABUNG TECHNOLOGIES

Forces & Moments In The Construct

FEA Main Rotation in Flexion

Surgical Technique Evaluation

VCM Surgical Technique Modelization

SERVICES & SUPPORT

ENABLING TECHNOLOGIES

INTEGRATED SPINE SOLUTIONS

INTEGRATED

Surgical Technique Evaluation

Pedicle Subtraction Osteotomies

SERVICES & SUPPORT

- Screw shaft / rod angle for Mono (a) and Poly-axial (b) constructs.
- Rod contour for Mono (c) and Poly-axial (d) constructs

SERVICES & SUPPORT

INTEGRATED SPINE SOLUTIONS

INTEGRATED SERVICES & SUPPORT

THEOREM

SPIDER FIXATION SYSTEM

SPIDER FIXATION SYSTEM

Design Optimization

ENNBUNG TECHNOLOGIES

ENABLING TECHNOLOGIES

Other Numerical Models

Rigid Block Analysis

« True » corrective forces concept

C.E. Aubin, X. Wang, D. Crandall, S. Parent, H. Labelle

IMAST

11. Biomechanical Effectiveness of Three Types of Pedicle Screws for the Spinal Instrumentation of Adolescent Idiopathic Scoliosis

Xiaoyu Wang, PhD; Carl-Eric Aubin, PhD, PEng; Hubert Labelle, MD; Dennis Crandall, MD; Stefan Parent, MD, PhD

Spine

SPINE Volume xx, Number ©2012, Lippincott Williams

BIOMECHANICS

Biomechanical Analysis of Corrective Forces in Spinal Instrumentation for Scoliosis Treatment

Xiaoyu Wang, PhD,* Carl-Eric Aubin, PhD, PEng,*+ Hubert Labelle, MD,+ Stefan Parent, MD, PhD,+ and Dennis Crandall, MD,‡

FAS

Dorso-axial

ENABUNG TECHNOLOGIES

INTEGRATED

SPINE SOLUTIONS

LOWEST forces

ROT: 0

SERVICES & SUPPORT

INTEGRATED

SPINE SOLUTIONS

57

Numerical Simulations

SERVICES & SUPPORT

INTEGRATED SPINE SOLUTIONS

58

And Tomorrow...

Personalized 3D Reconstruction

And Tomorrow...

Spine Surgery Simulator

Personalized Biomechanical Model

SERVICES & SUPPORT

• Patient's spine stiffness estimated from side bending radiographs

Computer Methods in Biomechanics and Biomedical Engineering 2003. Vot. 6 (1), pp. 27–32 Biomechanical Modeling of Posterior Instrumentation of the Scolibitic Spine

Medical & Biological Engineering & Computing 2004, Vol. 42 Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine

Y. Petit^{1,2} C.-É. Aubin^{1,2} H. Labelle²

INTEGRATED

SPINE SOLUTIONS

ENABUNG TECHNOLOGIES

And Tomorrow...

Spine Surgery Simulator

Preoperative Planning Simulator for Spinal Deformity Surgeries

C. E. Aubin, PhD,*t H. Labelle, MD,t C. Chevrefils, MASc,*t G. Desroches, MASc,*t J. Clin, MASc,*t and A. Boivin M. Eng*t

INTEGRATED SPINE SOLUTIONS

63

ENABLING TECHNOLOGIES

Medtronic

And Tomorrow...

Patient Pozitioning System

Per-Op Simulations

- Maintain patient (stability), minimize • bleeding, minimize chance of damage to vital structures, allow proper ventilation, avoid post-operative morbidity
- Facilitation of instrumentation, • procedures (laminectomy, discectomy, decompression), imaging
- Optimize patient positioning (intra-op • motion), multifunctional, preservation of natural biomechanics

SERVICES & SUPPORT

INTEGRATED SPINE SOLUTIONS

Lower Limb Pozitioning

Real Time Pressure Monitoring

And Tomorrow...

Virtual Reality Surgery Simulators

Implant Insertion

After Multiple Implant Insertions

Rod Manipulation / Biomechanical Simulations

"By using FEA, Medtronic is able to assess the nature of stresses on spinal structures – information that is crucial to designing implants or other devices to treat spinal damages."

Philippe MAXY Principal Scientist Route du Molliau CH1131 Tolochenaz SWITZERLAND Philippe.maxy@medtronic.com

Philippe MAXY

in

